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Abstract

Process capability indices Cp, Cpk, Cpm and Cpp fitting for nominal-the-best type quality characteristics, are effective

tools to assess process capability since these indices can reflect a centering process capability and process yield adequately.

The index Cpp introduced by Greenwith and Jahr-Schaffrath [Greenwith, M., Jahr-Schaffrath, B.L., 1995. A process

incapability index. International Journal of Quality and Reliability Management 12, 58–71] provides additional and

individual information concerning the process accuracy and the process precision. Although Cpp is useful to evaluate

process capability for a single product in common situation, Cpp cannot be applied to evaluate the multi-process capability.

Referring to Vännman and Deleryd’s (Cdr, Cdp)-plot, a fuzzy inference approach is proposed in our study to evaluate the

multi-process capability based on distance values of a confidence box. This method takes the advantages of fuzzy systems

such that a grade instead of sharp evaluation result can be obtained. An illustrated example of color STN display

demonstrates that the presented method is effective for assessment of multi-process capability.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Process capability indices (PCIs) are effective
tools for the assessment of process capability indeed
since the formulae of PCIs are easy to understand
and straightforward to apply. Greenwith and Jahr-
Schaffrath (1995) introduced a new index Cpp,
which provides an uncontaminated separation
between information concerning process accuracy
and process precision. It has been widely used to
provide numerical measures on whether a produc-
tion is capable of producing items within the
specification limits preset by the designer. The index
e front matter r 2007 Elsevier B.V. All rights reserved
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Cpp can be defined as

Cpp ¼
m� T

d=3

� �2

þ
s

d=3

� �2

, (1)

where m is the process mean, s the process standard
deviation, d the half the length of specification
interval ¼ (USL�LSL)/2, USL is the upper specifi-
cation limit, LSL the lower specification limit, and T

the target value. Now, let the inaccuracy index Cdr

and imprecision index Cdp be defined as

Cdr ¼
m� T

d
, (2a)

Cdp ¼
s
d
. (2b)
.
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Table 1

Cdr values and the corresponding values of m

Cdr values Values of m

jCdrj ¼ 0 m ¼ T

jCdrj ¼ 0.2 m ¼ T70.2d

jCdrj ¼ 0.4 m ¼ T70.4d

jCdrj ¼ 0.6 m ¼ T70.6d

jCdrj ¼ 0.8 m ¼ T70.8d

jCdrj ¼ 1 m ¼ T7d

jCdrj41 Outside of limits
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Obviously, one can recognize that Cpp ¼ (3Cdr)
2+

(3Cdp)
2 by comparing Eqs. (1) and (2). Cpp (including

Cdr and Cdp) provides additional information con-
cerning the process accuracy and the process preci-
sion. Index Cpp detects process inaccuracy and
process imprecision by using indices Cdr and Cdp.
Thus, Cpp is a deter choice for engineers measuring
process potentials and performance. Under the
assumption of normality, Chen (1998) first shows
that the estimators of Cpp is a uniformly minimum
variance unbiased estimator. It also obtains the rth
moment and the probability density function of this
estimator. Chen also takes into account the sampling
errors and develop a simple procedure using the
uniformly minimum variance unbiased estimator of
Cpp, for practitioners to use in determining whether a
process meets the capability requirement. The deci-
sions made based on the proposed procedure are, of
course, more reliable.

Although Cpp is useful to evaluate process
capability for a single product in a common
situation, Cpp cannot be applied to evaluate process
capability for that of multi-process. Thus, we extend
the applicability of the contour plot for processes
with multiple characteristics. In addition, we also
apply the method developed by Chen et al.
(2003a, b) who introduced a process capability plot,
called the MCPCA control chart, which is an
adjustment of Vännman and Deleryd’s (1999) (Cdr,
Cdp)-plot where Cdr ¼ (m�T)/d and Cdp ¼ s/d.
Referring to (Cdr, Cdp)-plot, a method to incorpo-
rate the fuzzy inference with process capability is
used to assess multi-process. The concept of fuzzy
sets was first proposed by Zadeh (1965). Now, fuzzy
theorems have been applied in many fields such as
automatic control, manufacturing system and deci-
sion-making (Gulley and Jang, 1996; Jang, 1993;
Kacprzyk, 1997; Lin and Lin, 2001; Lin and Sheu,
1992; Mamdani, 1974; Takagi and Sugeno, 1985) in
industry. In this paper, a fuzzy inference approach
to multi-process capability is proposed. This fuzzy
inference evaluation will consider Cdr and Cdp to
formulate new indices as input and obtain a result
value as output. In addition, illustrated example and
evaluation procedure will be presented for ease of
applications.

2. Relationship between process capability index and

process yield

The index Cdr measures departure of process
mean m from the target value T. For centering
process, Cdr ¼ 0 it indicates that the process is
completely on target, Cdr ¼ 1 it indicates that
m ¼ USL, and Cdr ¼ �1 it indicates that m ¼ LSL.
If jCdrj41, m falls outside the specification limits.
The formula of Cdr transforms the original specifi-
cations form (LSL, T, USL) to (�1, 0, 1). Table 1
displays various Cdr values and the corresponding
values of m.

While the index Cdr measures degree of process
departure ratios, the index Cdp measures the
magnitude of process variation. Because Cdr ¼ (m�
T)/d and Cdp ¼ s/d, Cpp ¼ (3Cdr)

2+(3Cdp)
2 is

achieved. For simplicity, let Cpp ¼ c, then the
relationship between index Cpp and process yield is

%Yield ¼ F
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=9� ðs=dÞ2

q
ðs=dÞ

2
4

3
5

þ F
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=9� ðs=dÞ2

q
ðs=dÞ

2
4

3
5� 1, ð3Þ

where F is the standard normal cumulative dis-
tribution function and ðs=dÞp

ffiffiffi
c
p
=3

� �
. As noted by

Chen et al. (2001), process capabilities are categor-
ized into five conditions. Table 2 presents the
quality conditions and the corresponding Cpm and
Cpp values. Let h ¼ 9

� ffiffiffiffiffiffiffiffi
Cpp

p
ðs=dÞ, the curves of the

function of process yield versa Cpp with h ¼ 1, 2 and
3 are shown in Fig. 1. One can recognize that a
smaller value of Cpp corresponds to a high process
yield as shown in Fig. 1. When Cdr ¼ 0 (or h ¼ 3),
the relationship between index Cpp and process is
%Yield ¼ 2F 3

� ffiffiffiffiffiffiffiffi
Cpp

p� �
� 1 and when jCdrjp1, the

relationship between index Cpp and process is
%Yield ¼ 2F 3

� ffiffiffiffiffiffiffiffi
Cpp

p� �
� 1. Practitioners are en-

couraged to pursue smaller values of Cpp (so as Cdr

and Cdp) to ensure the satisfied process yields.
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3. Process capability analysis plot

The index Cpp can directly be used to assess process
capability when 100% inspection is applied. Instead
of 100% inspection, acceptance sampling is most
likely to be useful when the testing is destructive, or
the testing cost is extremely high, etc. Generally, only
estimated capability index Ĉpp by using a sample can
be obtained in practice. Let Xi1, Xi2,y, Xin, i ¼ 1,
2 ,y,k, are k sets of random samples of size n from
each process (the samples size are selected the same
for simplicity; however, it is not necessary). Each
process has the same product specification and target
value. The above calculation of average and variance
are briefly summarized in Table 3.

Thus, the natural estimator of Cppi can be written
as the following:

Ĉppi

ðX̄ i � TÞ2

D2
þ

S2
i

D2
; i ¼ 1; 2 ; . . . ; k, (4)
Table 2

Classification of quality conditions

Quality condition Cpm Cpp

Inadequate Cpmo1 Cpp41

Capable 1.00pCpmo1.33 0.56oCppp1.00

Satisfactory 1.33pCpmo1.50 0.44oCppp0.56

Excellent 1.50pCpmo2.00 0.25oCppp0.44

Super CpmX2.00 Cppp0.25

0.25 0.56 1 2
0.85

0.875

0.9

0.925

0.95

0.975

1

1.025

%
Y

ie
ld

Fig. 1. The relationship betwe
where D ¼ d/3, X̄ i and S2
i are the sample mean

and sample variance of process i with sample size ni.
The probability density function of Ĉppi (see Chen,
1998) is

f Ĉpp
ðxÞ ¼

nD2

s2

� �X1
j¼0

PjðlÞ
Z ðnD2=s2Þx

0

f K

nD2

s2
x� y

� �

� f Y j
ðyÞdy, ð5Þ

where x40, Yj is distributed as w2 with (1+2j)
degrees of freedom and

PjðlÞ ¼
e�ðl=2Þðl=2Þj

j!
. (6)

Furthermore, the mean value and variance about
Ĉppi is

E ¼ Ĉppi

� 	
Cpp,

Var Ĉppi

� 	
¼

2s4

nD4
þ

4ðm� TÞ2s2

nD4
.

Let m̂ and ŝ be the unbiased estimators of m
and s, then we have m̂ ¼ X̄ , ŝ ¼ c4 � S and
c4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn� 1Þ

p
G½n=2�=G½ðn� 1Þ=2�. The factor c4

is a function of the sample size n and c4 approaches
to unity when the sample size is large enough as
shown in Fig. 2. Under normal assumption, ðn� 1Þ
½ðc4ŝÞ=s�2 is obeying the w2-distribution with (n�1)
degrees of freedom. Thus, the confidence intervals
3 4

Cpp

h=1
h=2
h=3

en Cpp and process yield.
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Table 3

Sample data mean and variance

Sample Mean Variance

X11, X12,y, X1n X̄ 1 ¼
Pn

j¼1X 1j

� 	.
n S2

1 ¼
Pn

j¼1ðX 1j � X̄ 1Þ
2
.
ðn� 1Þ

X21, X22,y, X2n X̄ 2 ¼
Pn

j¼1X 2j

� 	.
n S2

2 ¼
Pn

j¼1ðX 2j � X̄ 2Þ
2
.
ðn� 1Þ

^ ^ ^
Xk1, Xk2,y, Xkn X̄ k ¼

Pn
j¼1X kj

� 	.
n S2

k ¼
Pn

j¼1ðX kj � X̄ kÞ
2
.
ðn� 1Þ
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Fig. 2. Relationship between sample size n and factor c4.
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of m and s can be represented as

m : m̂� ta=4;ðn�1Þ � c4 �
ŝffiffiffi
n
p ; m̂þ ta=4;ðn�1Þ � c4 �

ŝffiffiffi
n
p


 �

¼ ðX l ;X uÞ, ð6aÞ

s :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ � c24 � ŝ2

w21�a=4ðn� 1Þ
;

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ � c24 � ŝ2

w2a=4ðn� 1Þ

vuut
2
4

3
5

¼ ðY l ;Y uÞ, ð6bÞ

where ta/4,(n�1) is the upper quartile of t distribution
with (n�1) degrees of freedom; w21�a=4ðn� 1Þ and
w2a=4ðn� 1Þ are the upper percentile of w2-distribu-
tion with (n�1) degrees of freedom. The joint
confidence intervals of m and s are used to
formulate a confidence region and applied to reveal
the process capability. The four coordinates of this
confidence region are thus represented as

Upper�right coordinate:

m̂þ ta=4;ðn�1Þ � c4 �
ŝffiffiffi
n
p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ � c24 � ŝ2

w2a=4ðn� 1Þ

vuut
0
@

1
A,

ð7aÞ

Bottom�right coordinate:

m̂þ ta=4;ðn�1Þ � c4 �
ŝffiffiffi
n
p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ � c24 � ŝ2

w2
1�a=4ðn� 1Þ

vuut
0
@

1
A,

ð7bÞ

Upper�left coordinate:

m̂� ta=4;ðn�1Þ � c4 �
ŝffiffiffi
n
p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ � c24 � ŝ2

w2a=4ðn� 1Þ

vuut
0
@

1
A,

ð7cÞ
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Fig. 3. Multi-process capability analysis plot.
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Bottom�left coordinate:

m̂� ta=4;ðn�1Þ � c4 �
ŝffiffiffi
n
p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ � c24 � ŝ2

w2
1�a=4ðn� 1Þ

vuut
0
@

1
A.

ð7dÞ

Referring to Vännman and Deleryd’s (Cdr, Cdp)-
plot, we propose a new method to assess the process
capabilities of multi-process. Since Cdr ¼ (m�T)/d
and Cdp ¼ s/d, the confidence region (described in
Eq. (7)) in the capability plot of Cdr�Cdp should be
changed as

Upper�right coordinate:

ððX u � TÞ=d;Y u=dÞ ¼ ðX ru;Y ruÞ, ð8aÞ

Bottom�right coordinate:

ððX u � TÞ=d;Y u=dÞ ¼ ðX ru;Y rlÞ, ð8bÞ

Upper�left coordinate:

ððX l � TÞ=d;Yu=dÞ ¼ ðX rl;Y ruÞ, ð8cÞ

Bottom�left coordinate:

ððX l � TÞ=d;Y l=dÞ ¼ ðX rl;Y rlÞ, ð8dÞ

where Xu, Xl, Yu and Yl are described in Eq. (6).
And the maximum estimated index ðĈppÞmax could
be calculated as

ðĈppÞmax ¼ max½ð3X ruÞ
2
þ ð3Y ruÞ

2; ð3X rlÞ
2
þ ð3Y ruÞ

2
�.

(9)

To reduce the influence of sampling errors, we
shall use values of mentioned confidence box
described in Eq. (8) to afford a more reliable
assessment. In the plot of Cdr�Cdp, there are two
process capability values for P1 and P2 as seen in
Fig. 3, one can recognize that the process capability
is adequate if the confidence box is inside of the line
Cpp ¼ 1 (process P2) and process capability is
inadequate if the confidence box is outside of the
line Cpp ¼ 1 (process P1). The larger distance of this
confidence box to the coordinate original point (0,
0), the worse process capability. Let the nearest
distance from the coordinate original point to each
confidence box be Rmin in the capability plot (Fig. 3)
and the most far distance from the coordinate
original point to each confidence box be Rmax, then
Rmin and Rmax can be defined referring to Eq. (8) as

Rmin ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

ru þ Y 2
rl

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

rl þ Y 2
rl

q
;Y rl

� �
, (10)

Rmax ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

ru þ Y 2
ru

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

rl þ Y 2
ru

q� �
. (11)

In our study, Rmin and Rmax are used to represent
the process capability for each model and a reliable
assessment is achieved by using the magnitudes of
Rmin and Rmax.

4. Fuzzy inference method for process capability

In this section, a fuzzy inference approach is
proposed to assess the process capability for multi-
process. A process capability analysis plot as stated
in Section 3, Rmin and Rmax are used to assess the
process capability. The larger values of Rmin and
Rmax for each model, the worse process capability.
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Let [Rmin i, Rmax i] and [Rmin j, Rmax j] be the nearest
and the most far distances in the plot of Cdr�Cdp

for the process i and j, respectively. Consider [Rmin i,
Rmax i] and [Rmin j, Rmax j] as set of two lines in same
axis, then the comparison of two processes can be
represented by statistical method as
(1)
Fig. 4. Structure of fuzzy inference system.
If [Rmin i, Rmax i]\[Rmin j, Rmax j] 6¼f, then
concluded that equal process capability for
process i and j.
(2)
 If Rmin i4Rmax j, then concluded that the
process capability for process i is inferior to
that of process j.
(3)
 If Rmax ioRmin j, then concluded that the
process capability for process i is superior to
that of process j.
Nevertheless, it is rather ambiguous in rule one.
In this rule, the process capability is concluded to be
equal irrespective of whether the intersection is
small or large. For instance:

Case A: When [Rmin i, Rmax i] ¼ [0.1, 0.6] and
[Rmin j, Rmax j] ¼ [0.5, 0.9] then [Rmin i, Rmax i]\[Rmin

j, Rmax j] ¼ [0.5, 0.6].
Case B: When [Rmin i, Rmax i] ¼ [0.2, 0.8] and

[Rmin j, Rmax j] ¼ [0.3, 0.9] then [Rmin i, Rmax i]\[Rmin

j, Rmax j] ¼ [0.3, 0.8].
One can recognize Case B is superior to Case A

for the possibility of equal process capability. To
deal with the ambiguous problem in judging process
capability, a method to incorporate the fuzzy
inference with a process capability index is pro-
posed. Thus, distinguishing the equal grade of
capability (for process i and j in rule one) in
different intersection is achieved. An approximating
rule-based reasoning approach is used for quanti-
tative analysis. In our study, the process i is said to
be superior to process j when the value of inference
result is positive. The larger the result value, the
more capable of process i is compared to process j.
Oppositely, the negative value of result implies that
the process i is inferior to process j. In other words,
the process i is said to be completely better-quality
than that of process j when the value of inference
result is equal to 1; the process i is said to be
completely same-quality to that of process j when
the value of inference result is equal to 0 and the
process i is said to be completely worse-quality than
that of process j when the value of inference result is
equal to �1. The result value of inference within
{0, 1} or {�1, 0} is used to represent the different
grade of capability. The h processes are tested two
at a time, there are hC2 ¼ h(h�1)/2 possible paired
comparisons. Let the indices d and g be defined as

d ¼
Rmin i � Rmax j

maxðRmax i;Rmax jÞ
, (12)

g ¼
Rmax i � Rmin j

maxðRmax i;Rmax jÞ
. (13)

Then the fuzzy inference systems are composed of
two inputs and one output as shown in Fig. 4.

A constructive theory of fuzzy sets is proposed by
Zadeh (1965). He replaced the characteristic func-
tion in the conventional set theory, which takes on
the value 0 or 1, by the so-called membership
function. Generally, the procedure of fuzzy analysis
consists of four steps: definition of input/output
fuzzy variables, fuzzy rules, fuzzy inference and
defuzzification (Jang, 1993; Kacprzyk, 1997; Lin
and Lin, 2001; Lin and Sheu, 1992; Mamdani, 1974;
Takagi and Sugeno, 1985; Vännman and Deleryd,
1999; Yager and Filev, 1994).
(1)
 Definition of input/output fuzzy variables: The
membership functions (MFs) of input/output
variables are defined by linguistic variables.
There are four kinds of MFs for representing
fuzzification: triangular, trapezoid, Gaussian
and sigmoid type. In our study, we adopt the
triangular and trapezoid types as MFs for the
sake of simplicity and easy to describe the
asymmetric property. The triangular MF is
specified by three parameters {a, b, c} which
determine the three corners of triangle. If this
function is denoted as trimf(x;a,b,c) then

trimfðx; a; b; cÞ ¼

0 xoa;
x�a
b�a

apxpb;
c�x
c�b

bpxpc;

0 x4c:

8>>><
>>>:

(14)

Furthermore, the trapezoid MF is denoted
trapmf(x;a,b,c,d) which is specified by four
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Fig. 5. Membership functions of input variables.
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parameters {a,b,c,d}, and then we have

trapmfðx; a; b; c; dÞ ¼

0 xoa;
x�a
b�a

apxpb;

1 bpxpc;
d�x
d�c

cpxpd;

0 x4d:

8>>>>>><
>>>>>>:

(15)

The universe of input variables is defined in
{�1, 1} as shown in Fig. 5. MFs of input d are
defined as trapmf(x;�1,�1,�0.4,�0.3), trimf
(x;�0.4,�0.3,�0.2), trimf(x;�0.3,�0.2,�0.1),
trimf(x;�0.2,�0.1,0), trimf(x;�0.1,0,0.1) and
trapmf(x;0,0.1,1,1) for representing N4 (nega-
tive), N3, N2, N1, ZE (zero) and PO (positive),
respectively. Also, input g are defined as trap-
mf(x;�1,�1,�0.1,0), trimf(x;�0.1,0,0.1), trimf
(x;0,0.1,0.2), trimf(x;0.1,0.2,0.3), trimf(x;0.2,
0.3,0.4) and trapmf(x;0.3,0.4,1,1) for represent-
ing NE (negative), ZE, P1 (positive), P2, P3 and
P4, respectively. In addition, the output vari-
ables are composed of seven triangular MFs for
representing L3 (inferior), L2, L1, EQ, S1
(superior), S2 and S3 as shown in Fig. 6.
(2)
 Fuzzy rules: Fuzzy rules are important to
successful inference result (Gulley and Jang,
1996; Jang, 1993; Kacprzyk, 1997; Lin and Lin,
2001; Lin and Sheu, 1992; Mamdani, 1974;
Takagi and Sugeno, 1985; Vännman and
Deleryd, 1999; Yager and Filev, 1994). A rule
base represents the experience and knowledge of
experts. The fuzzy rules are similar to the
intuitional thinking of a human. In general,
there are no systematic tools for forming the
fuzzy rules. Different sources of knowledge,
resulting in formulation of alternative rules, can
be considered. A fuzzy inference system, com-
posed of two inputs and one output, could
employ this kind of fuzzy rule as

If x1 is Ai1 and x2 is Ai2 then y is Bi ðfor i ¼ 1� nÞ,

where x1, x2 and y are fuzzy system input and
output variables; Ai1, Ai2 and Bi are fuzzy
subsets of their linguistic variables. In this
study, the fuzzy inference system is applied to
assess the process capability by using the
confidence interval values of Rmin and Rmax

(defined in Eq. (8)). Thirty-three if– then rules
are employed in our study. They are:
Rule 1: if (d is PO) and (g is P4) then (result
is L3).
Rule 2: if (d is PO) and (g is P3) then (result
is L3).
^
Rule 33: if (d is N4) and (g is NE) then (result
is S3).
The tabulated fuzzy rules are listed in Table 4.
Note here, the fuzzy rules indicated in Table 4, if
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Table 4

The tabulated fuzzy rules
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1
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Fig. 6. Membership functions of output variable.
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(d is PO) and (g is ZE) or (g is NE) in addition to
if (d is ZE) and (g is NE), are never happened
since the definition of two input variables
always exists gXd.
d
(3)

PO L3 L3 L3 L3 — —

ZE L2 L2 L2 L1 EQ —

N1 L2 L2 L1 EQ S1 S3

N2 L1 L1 EQ S1 S2 S3

N3 L1 EQ S1 S2 S2 S3

N4 EQ S1 S1 S2 S3 S3
Fuzzy inference: Fuzzy inference is an inference
procedure to derive conclusion based on a set
of if– then rules. In this paper, the Mam-
dani inference method (Kacprzyk, 1997) that
employs the maximum–minimum product
composition to operate fuzzy if– then rules
is adopted (another inference method see
Mamdani, 1974). Let the rule be: if x1 ¼ A1

and x2 ¼ A2 then y ¼ B, then the result
of inference can obtain a fuzzy set with MF of
Bi
0 as

mB0i
ðyÞ ¼ max

X
min½mA0i1

ðx1Þ;mA0i2
ðx2Þ; mRi

ðx1; x2; yÞ�
n o

,

(16)

where

mRi
ðx1; x2; yÞ ¼ min½mAi1

;mAi2
; mBi
ðyÞ�.
(4)
 Defuzzification: The fuzzy sets of Bi
0 are

obtained by Step (3), then the defuzzification
is used to find a crisp value y*AY which
represents the fuzzy sets. The frequently used
defuzzification methods have: weight, area and
height method in Yager and Filev (1994). The
weight defuzzification method is used in our
study, and then we have

y� ¼

R
Y

yBðyÞdyR
Y

BðyÞdy
. (17)

Result of fuzzy inference, performed by a
Matlab Logic Fuzzy Toolbox (Zadeh, 1965), is
then used to represent the process capability for
each model.
5. Procedure of fuzzy evaluation and illustrated

example

Below, an example is taken to explain the
proposed procedure in detail. To illustrate how the
testing procedure may be applied to the practical
data colleted from the factories, the following case
on color STN displays product was taken from a
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manufacturing industry located on middle Taiwan.
Color STN displays are created by adding color
filter to traditional monochrome STN displays. In
color STN displays, each pixel is divided into red,
green, and blue sub-pixels. To control the light
through the color filter, different colors are made by
combination of these primary colors. The thickness
of membrane, which plays as an important quality
characteristic in our study, is measured for each
pixel after finishing post-baking process. The
specification limits are set to 1200750 nm
(1 nm ¼ 10�9m), that is, the upper/lower specifica-
tion limits are set to USL ¼ 1250, LSL ¼ 1150, and
the target value is set to T ¼ 1200. In practice, if the
thickness of membrane for color STN does not fall
within the tolerance (LSL, USL), the problem of
chromatic aberration for color STN displays will be
happened. Table 5 presents the concise information
of four models denoted with MOD1, MOD2,
MOD3 and MOD4. The fuzzy evaluation procedure
is stated as follows:

Step 1: Determine the sample size n ¼ 60 for all
manufacturing processes, then the values of mean
and standard deviation are calculated as indicated
in Table 5. Also, the significant level is given 0.05.

Step 2: Compute the values of c4 and ŝ. Also,
calculate four coordinates values of each confidence
box described in Eq. (8).
Table 5

Process capability value for four processes

Process m̂ ¼ X̄ i Si ŝ Rmin i Rmax i ðĈppÞmax i

MOD1 1203 10.0 0.9577 0.1657 0.2782 0.6966

MOD2 1201 10.1 10.0573 0.1720 0.2661 0.6373

MOD3 1200 11.1 11.0531 0.1954 0.2866 0.7394

MOD4 1197 10.6 10.5552 0.1756 0.2934 0.7747

Table 6

Fuzzy inference results

Pairs (i–j) [Rmin i, Rmax i] [Rmin j, Rmax j]

MOD 1–2 [0.1657, 0.2782] [0.1720, 0.2661]

MOD 1–3 [0.1657, 0.2782] [0.1954, 0.2866]

MOD 1–4 [0.1657, 0.2782] [0.1756, 0.2934]

MOD 2–3 [0.1720, 0.2661] [0.1954, 0.2866]

MOD 2–4 [0.1720, 0.2661] [0.1756, 0.2934]

MOD 3–4 [0.1954, 0.2866] [0.1756, 0.2934]

Note: Result value of ‘‘MODj to MODi’’ ¼ �’’MODi to MODj’’.
Step 3: In the process capability analysis plot,
compute the nearest and the most far distances
(Rmin and Rmax) in Eqs. (8) and (9) for each process.

Step 4: Compute the indices d and g for two-
process pairs (there are six pairs) and thus to obtain
the fuzzy evaluation results through the proposed
fuzzy inference system. The above calculations are
performed through developed Matlab program. As
indicated in Table 6, one can recognize the model of
MOD2 is the best one among these four processes
since all values of inference result are positive
for competing pairs (MOD2 to MODj, for j ¼ 1, 3
and 4).
6. Conclusion

Process capability indices like Cpm and Cpp are
proved to reflect the centering process capability
and process yield adequately and are used to achieve
a numerical measure on whether a production is
capable of producing items within the specification
limits. The index Cpp is a simple transformation
from the index Cpm, and provides individual
information concerning the process accuracy and
process precision. Referring to Vännman and
Deleryd’s (Cdr, Cdp)-plot, a method to incorporate
fuzzy inference with process capability is adopted in
this paper to evaluate the capability of competing
processes based on distance values in the process
capability analysis plot. This fuzzy evaluation
method considers the indices d and g (both are
relative to the above confidence box) as inputs and
obtain a result value as output. Results of inference
are used to represent the grade of process capability
for each model. The presented method affords a
more reliable assessment result and possesses the
advantages of fuzzy systems such that a grade
instead of sharp evaluation result can be obtained.
An illustrated example of color STN display is
d g Result

�0.3610 0.3816 �0.0493

�0.4220 0.2891 0.3498

�0.4353 0.3496 0.1505

�0.3997 0.2469 0.3468

�0.4136 0.3084 0.2880

�0.3341 0.3783 0.0860
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employed to demonstrate that the presented method
is effective and thus supports its feasibility for
assessment the capability of multi-process.
Acknowledgment

The authors would like to thank for the National
Science Council of the Republic of China for
financially supporting this research under Contract
NSC-92-2213-E-167-014.
References

Chen, K.S., 1998. Estimation of the process incapability index.

Communications in Statistics—Theory and Methods 27 (5),

1263–1274.

Chen, K.S., Huang, M.L., Li, R.K., 2001. Process capability

analysis for an entire product. International Journal of

Production Research 39 (17), 4077–4087.

Chen, K.S., Pearn, W.L., Lin, P.C., 2003a. Capability measures

for processes with multiple characteristics. Quality and

Reliability Engineering International 19, 101–110.

Chen, T.W., Chen, K.S., Lin, J.Y., 2003b. Fuzzy evaluation of

process capability for bigger-the-best type products. Interna-

tional Journal of Advanced Manufacturing Technology 21,

820–826.
Greenwith, M., Jahr-Schaffrath, B.L., 1995. A process incap-

ability index. International Journal of Quality and Reliability

Management 12, 58–71.

Gulley, N., Jang, J.S.R., 1996. Fuzzy Logic Toolbox for use with

Matlab. Math Works, Massachusetts, USA.

Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy

inference. IEEE Transactions on Systems, Man and Cyber-

netics 23 (3), 665–684.

Kacprzyk, J., 1997. Multistage Fuzzy Control: a Model-based

Approach to Fuzzy Control and Decision Making. Wiley,

New York, USA.

Lin, Z.C., Lin, C.Y., 2001. Application of an adaptive neuro-

fuzzy inference system for the optimal analysis of chemical–

mechanical polishing process parameters. International

Journal of Advanced Manufacturing Technology 18, 20–28.

Lin, C.E., Sheu, Y.R., 1992. A hybrid-control approach for

pendulum-car control. IEEE Transactions on Industrial

Electronics 39 (3), 208–214.

Mamdani, E.H., 1974. Application of fuzzy algorithm for control

of simple dynamic plants. Proceedings of IEE 121, 1585–1588.

Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and

its application to modeling and control. IEEE Transactions

on Systems, Man and Cybernetics 15, 116–132.

Vännman, K., Deleryd, M., 1999. Process capability plots—a

quality improvement tool. Quality and Reliability Interna-

tional 15, 213–217.

Yager, R.R., Filev, D.P., 1994. Essentials of Fuzzy Modeling and

Control. Wiley, New York, USA.

Zadeh, L.A., 1965. Fuzzy sets. Information and Control 8,

338–353.


	Multi-process capability plot and fuzzy inference evaluation
	Introduction
	Relationship between process capability index and process yield
	Process capability analysis plot
	Fuzzy inference method for process capability
	Procedure of fuzzy evaluation and illustrated example
	Conclusion
	Acknowledgment
	References


